		上字文工科 開講科目名 (英語表記)	必 修	授業	時	(単 位 数	学年			-#- ##- log
区 	分			形態	間 数		1年	2年	3年	講義概要
		生物学 Biology	必修	講義	30	(1)	30			解剖学の基本となる生命科学の基本原理を学び、 ヒトの成り立ちから最新の生物学的知見までを 理解し自らの言葉で説明できる。
	科学的思考	化学 Chemistry	必修	講義	60	(2)	60			医学を学ぶにあたり必要な基礎知識として、無機化学、有機化学など化学の基礎知識を理解できる。
	考の基盤	物理学 Physics	必修	講義	60	(2)	60			自然科学の基礎となる物理法則を学び、流体・熱・ 電磁気・光・波などの力学的知識を身につける。
		基礎数学 General Mathematics	必修	講義	30	(1)	30			電気工学・電子工学・計測学・統計学を学ぶうえで 必要となる数学の基礎知識を活用できる。
基礎		文章表現•読解 Writing Expressions and Reading Skills	必修	演習	15	(1)	15			文章を読み理解する力を身につけると共に、語彙力 を伸ばし、自身の考えや想いを整理し表現できる。
分野	人間と生活	健康科学 Health Science	必修	演習	30	(1)	30			社会人として必要な基礎体力を養うとともに、心身 共に健康な状態とは何かを説明できる。
		基礎英語 I English I	必修	講義	30	(1)	30			日常英会話を中心に学び、英語を用いたコミュニ ケーションができる。
		基礎英語 Ⅱ English Ⅱ	必修	講義	30	(1)	30			科学英語や工業英語を中心に学び、医療機器に用いられるメッセージを適切に読み取れる力を身につける。
		医学英語 Medical English	必修	講義	30	(2)		30		医学用語、略語、病歴診察所見などの専門的医学英語と簡単な英文を読み解くことができる。
	社会の理解	コミュニケーション Communication	必修	演習	30	(2)	30			臨床工学技士としてだけでなく、医療人・社会人と して他者と円滑な人間関係を築くコミュニケーショ ン技術を身につける。
		人の構造及び機能 I Human Anatomy and Physiology I	必修	講義	60	(2)	60			医療スタッフにとって共通知識である、正常な人体の解剖と機能を学び、病態を理解するための基本知識を説明できる。
	人体の	人の構造及び機能 II Human Anatomy and Physiology II	必修	講義	30	(1)	30			各器官(消化器系・神経系・運動器系・感覚器等)の 位置関係、役割、関連性を説明できる。
専門基	の構造及び	生化学 I Clinical Biochemistry I	必修	講義	30	(1)	30			無機化学、有機化学、生物化学、化学工学等の化学 的な考察方法が説明できる。
基礎分野	○機 能	臨床生理学 Clinical Physiology	必修	講義	30	(1)		30		正常な身体の生理機能と疾病時の変化、関連および 検査法などについて説明できる。
		基礎医学実習 Basic Medical Science Laboratory	必修	実習	45	(1)	45			化学や生化学、人の構造及び機能等で学んだ基礎医 学の知識を、実技を通して説明できる。
	要な医学的基 臨床工学に必	医学概論 Introduction to Medical Science	必修	演習	15	(1)	15			医学の歴史、医療技術の進歩、生命倫理等を学び、 医療従事者として相応しい心構えを身につける。

		上字技工科 開講科目名 (英語表記)	必修	授業	時間数	(単		学年		=#- add 100 TT
	:分		選択	形態		位数	1年	2年	3年	講義概要
		生化学 II Clinical Biochemistry II	必修	講義	30	(1)	30			細胞内の化学変化を分子レベルで理解し、化学的基礎知識がどのように病気の予防・診断・治療につながる詳細を説明できる。
	rÆ.	臨床免疫学 Clinical Immunology	必修	講義	30	(1)		30		免疫系の概要と仕組み、および各種アレルギー反 応、微生物についての基礎知識を習得する。
	臨床工学に	臨床薬理学 Clinical Pharmacology	必修	講義	30	(1)		30		薬の分類、構造や作用機序と副作用、各器官ごとに 使用される薬剤について理解できる。
	必要な	病理学 Pathology	必修	講義	30	(1)		30		病気の原因、症状、疾病の成り立ちを学び、診断治 療の基礎となる知識を身につける。
	医学的基礎	公衆衛生学 Public Health	必修	講義	15	(1)	15			健康の維持増進、疾病の予防と公的な社会福祉、保 健行政等の仕組みを説明できる。
		関係法規 I Regulations for Clinical Engineering Technologist I	必修	講義	15	(1)		15		臨床工学技士として正しく職務を遂行するために必 要な基礎となる法規について理解できる。
		チーム医療概論 Interprofessional Care	必修	演習	30	(2)	30			医療機関におけるチームのあり方と概念を学び、医療専門職としての自覚とチームの一員として相応しい姿勢を身につける。
専門基礎		電磁気学 Electromagnetics	必修	講義	30	(1)	30			生体の電気現象を正しく捉えるために電界と磁界の 関係、磁場と電流など、検査や治療に用いられる 様々な電磁気現象の基礎について説明できる。
一 分 野		電気工学 Electrical Engineering	必修	講義	60	(2)	60			オームの法則や直流・交流回路などの基本的電気工 学の知識を学び、抵抗やコンデンサの働き、相互作 用におけるフィルタ回路などを理解できる。
	臨	電気工学演習 Electrical Engineering Execise	必修	演習	30	(1)	30			電気工学の講義で学んだことを医療機器に関連する 事柄を通して説明できる。
	床工学に	電気工学実習 Electrical Engineering Laboratory	必修	実習	60	(2)	60			様々な素子を組み合わせた電気回路などの電気特性 を実習を通して学び、基礎知識の整理と応用力を身 につける。
	必要な理	電子工学 I Electronic Engineering I	必修	講義	60	(2)	60			電子物性の基礎を学び、半導体等の電子素子の特性 および素子を組み合わせた際の信号への影響等を説 明できる。
	工学的基礎	電子工学 II Electronic Engineering II	必修	講義	30	(1)		30		電子工学の基礎、アナログ/デジタル変換、増幅回路、信号処理等システムを構成する技術について説明できる。
	礎	電子工学実習 Electronic Engineering Laboratory	必修	実習	60	(2)	60			電子回路や各種素子に関連する基本的な知識の整理 と応用力を実習を通して身につける。
		機械工学 I Mechanical Engineering I	必修	講義	30	(1)		30		機械を構成する各要素の構造や特徴、力学的性質な どの機械工学の基礎を身につける。
		機械工学Ⅱ Mechanical EngineeringⅡ	必修	講義	30	(1)				機械、音、振動、熱等を用いた機械工学的特性と物 理的知識を関連づけ、説明できる。

		上字坟工科 開講 _{科目名}	心体	授業 形態		(単	学年			
区 	分	(英語表記)				位数	1年	2年	3年	講義概要
	臨床工学に	応用数学 Applied Mathematics	必修	講義	30	(1)	30			ベクトルや行列等の線型代数や微積分等、卒業後も 臨床工学技士として活躍していくために必要な数学 の知識を身につける。
	必要な理工	計測工学 Measurement Engineering	必修	講義	30	(1)	30			計測技術の基礎・原理を中心に学び、生体計測のための基礎知識を身につける。
	-学的基礎	臨床工学演習 I Clinical Engineering Seminar I	必修	演習	30	(1)				臨床工学技士に必要な理工学的知識の復習を行い、 医学と関連づけながら説明できる。
専	臨床工	コンピュータ演習 Computer Seminar	必修	演習	60	(2)	60			コンピュータに関する基本的知識の整理と、wordや excel、powerpoint等のパソコンスキルを身につけ る。
門基礎分	学に必要な	システム • 情報処理工学 I Systems & Information Processing I	必修	講義	30	(2)	30			コンピュータの原理、デジタル処理の基本的な考え 方を説明できる。
野	医療情報	システム • 情報処理工学 Ⅱ Systems & Information Processing Ⅱ	必修	講義	30	(2)		30		コンピュータの詳細と医療技術への活用、情報処理 技術とセキュリティ技術等の応用技術について説明 できる。
	技術とシス	システム • 情報処理工学実習 Systems & Information Processing Seminar	必修	実習	30	(1)		30		情報処理工学、システム工学の基礎と概念を学び、 実践できる。
	テ ム 工 学	システム制御工学 Systems and Control Engineerig	必修	講義	30	(1)				システム理論や伝達関数など制御技術の基礎を身に つけ、AIなどの最新の制御技術等について理解で きる。
	の基礎	医療統計学 Medical Statistics	必修	演習	30	(1)				研究や開発等で必要となる、データの収集・整理、 確率・検定等の統計処理の基本や考え方を身につけ る。
		医用工学概論 Introduction to Medical Engineering	必修	演習	15	(1)		15		臨床工学技士として医用工学技術がどの分野でどの ように活用されているか総合的に説明できる。
	生	生体物性工学 Bio-Physical Properties of the Human Body	必修	講義	60	(2)		60		生体組織、細胞における様々な現象や反応を理工学 的視点から捉え、物理学知識とともに説明できる。
	体工学	医療材料工学 Medical Materials Science and Engineering	必修	講義	30	(2)		30		医療現場で用いられる人工材料の特性と、人体に使用した際の生体反応や生体適合性について説明できる。
専門分野		放射線工学概論 Introduction to Radiological Engineering	必修	講義	30	(2)			30	放射線の概要と放射線による生体作用、検査や治療 に用いられる放射線の応用技術と安全管理について 説明できる。
	医用機器	医用機器学概論 Introduction to Medical Instruments	必修	演習	30	(1)		30		医用機器の定義や身近に存在する機器と医用機器の 違い、医用機器の様々な役割について説明できる。
	学及び臨床	医用治療機器学 I Medical Therapeutics Apparatus Studies I	必修	講義	30	(1)		30		電気的治療機器、機械的治療機器、手術用機器の原理・用途などの概要および保守管理等について説明できる。
	支援	医用治療機器学実習 Medical Therapeutics Apparatus Laboratory	必修	実習	60	(2)				電気的治療機器、機械的治療機器、手術用機器、そ の他の機器について、操作方法や保守管理技術を中 心に学び実践できる。

<u>臨床工学技士科</u>

	分	<u>エー・ </u>		授業	時 間	(単 位		学年		講義概要
	. יחי	(英語表記)	選択	形態	数	数	1年	2年	3年	神我似安
	医用	生体計測装置学 I Biometric Instruments I	必修	講義	30	(1)		30		生体信号を計測することの臨床的意義と基本原理・ 計測機器の特徴について説明できる。
	機器学及び	生体計測装置学実習 Biometric Instruments Laboratory	必修	実習	60	(2)		60		実際の計測機器を用いて座学で学んだ知識を整理し つつ、操作できる。
	び臨床支援技	臨床支援技術学 Clinical Assistive Technology Studies	必修	講義	30	(2)			30	医療機器を介した臨床支援が必要とされる症例の病 態や治療の実際を学ぶ。
	技術	臨床支援技術学実習 Clinical Assistive Technology Studies Laboratory	必修	実習	30	(1)			30	臨床支援が必要とされる内視鏡業務や心血管カテー テル業務などにおける機器の特徴や操作方法を実習 を通して学び、適切な取扱いと安全な保守管理技術 を実践できる。
		生体機能代行技術学概論 Introduction to Medical Devices and Artificial Organs	必修	演習	15	(1)	15			医療機器全般に関する概要および医療従事者・実習 生として相応しい態度、医療機関に出入りする者と して必要な心構えを身につける。
		生体機能代行技術学 I(呼吸) Medical Devices and Artificial Organs I (Respiration)	必修	講義	60	(2)		60		呼吸の基礎、呼吸に関連する疾患、呼吸療法に使用 される機器、物品について種類・原理等を学び、適 切な取扱いと保守管理方法を説明できる。
	生体機能代行技術学	生体機能代行技術学実習 I(呼吸) Medical Devices and Artificial Organs Practical Training I (Respiration)	必修	実習	30	(1)		30		呼吸療法に使用される機器と周辺機器について適切 な操作方法や選択基準・保守管理技術を実践でき る。
専門		生体機能代行技術学 II(循環) Medical Devices and Artificial Organs II (Circulation)	必修	講義	60	(2)		60		循環器の基礎と関連する病態、循環器領域で使用される機器や物品について原理や特徴を学び、適切な取扱いと保守管理方法を説明できる。
野		生体機能代行技術学実習 Ⅱ(循環) Medical Devices and Artificial Organs Practical Training Ⅱ (Circulation)	必修	実習	30	(1)		30		循環器系医療機器の特徴や操作方法を実習を通して 学び、適切な取扱いと安全な保守管理技術を実践で きる。
	,	生体機能代行技術学Ⅲ (代謝) Medical Devices and Artificial OrgansⅢ (Metabolic)	必修	講義	60	(2)		60		代謝の基礎と関連する病態・疾患、血液浄化領域で 使用される機器や物品の原理や特徴を学び、適切な 取扱いと保守管理方法を説明できる。
		生体機能代行技術学実習Ⅲ(代謝) Medical Devices and Artificial Organs Practical TrainingⅢ(Metabolic)	必修	実習	30	(1)		30		血液浄化療法に用いられる機器本体だけでなく、幅 広い周辺機器の原理と特徴を実習を通して理解を深 め、適切な取扱いと安全な保守管理技術を実践でき る。
		臨床工学演習 Ⅱ Clinical Engineering Seminar Ⅱ	必修	演習	60	(2)			60	人体を臓器毎ではなく、一つの有機体として捉え、 個々の専門分野で学んだ知識を関連付けて説明でき る。
		人間工学 Human Engineering and Ergonomics	必修	講義	30	(1)		30		人体の生理、反応、身体的な特徴や心理学的な影響など様々な視点から自己分析や事故分析を行い、安全なシステムについて説明できる。
	医療安全	医療マネジメント概論 Introduction to Medical Practice Management	必修	演習	15	(1)			15	組織や個人・業務の管理だけでなく、安全やリスクに関する概念や管理方法等について幅広く学び、個と組織に対するマネジメントスキルを身につける。
	全管理学	医療機器安全管理学 I Medical Instruments Safety I	必修	講義	30	(1)		30		安全という概念の理解と機器・施設の安全性と限 界、医療機器および医療機関の安全設備について説 明できる。
		医療機器安全管理学 Ⅱ Medical Instruments Safety Ⅱ	必修	講義	30	(1)			30	医療機器毎の特徴に沿った安全性の管理と故障状態 の理解、保守管理技術、人体に及ぼす影響について 説明できる。

		上字技工科 開講科目名 (英語表記)	必修	授業 形態		単	学年			= # 羊 堀 亜
	分					位 数)	1年	2年	3年	講義概要
		医療機器安全管理学実習 Medical Instruments Safety Laboratory	必修	実習	30	(1)		30		医療機器のメインテナンス方法と電気的安全性等を 様々な測定器を用いて計測し、実習を通して知識と 技術を実践できる。
	医療安全	生体計測装置学 II Biometric Instruments II	必修	講義	30	(1)			30	生体モニタリング技術を学び、関連する医療機器を 適切に使用するための知識を説明できる。
	安全管理学	関係法規 II Regulations for Clinical Engineering Technologist II	必修	講義	15	(1)			15	医療関連法規、臨床工学技士法、医療機器・機材に 関する法制度を説明できる。
		医用治療機器学 II Medical Therapeutics Apparatus Studies II	必修	講義	30	(1)			30	電気的治療機器、機械的治療機器、手術用機器の原理・用途、適応疾患、他分野への応用、生体への影響、保守管理等について説明できる。
専門分野	関	臨床医学総論 I General Theory of Clinical Medicine I	必修	講義	60	(2)		60		臨床工学技士に必要な臨床医学知識 (内科系疾患) について原因、病態と症状、治療方法を説明でき る。
	連臨床医学	臨床医学総論 Ⅱ General Theory of Clinical Medicine Ⅱ	必修	講義	60	(2)		60		臨床工学技士に必要な臨床医学知識 (外科系疾患) について原因、病態と症状、治療方法等を説明でき る。
	学	臨床医学総論Ⅲ General Theory of Clinical Medicine Ⅲ	必修	講義	75	(3)			75	臨床工学技士に必要な臨床医学知識(脳・神経系疾 患、遺伝性疾患、感染症等)について原因、病態と 症状、治療方法等を説明できる。
	臨床実習	臨床実習 I Clinical Laboratory Training I	必修	実習	30	(1)		30		臨床工学技士の役割と業務内容、患者や他職種との 関わりを臨床現場で学び、実践力を身につける。
		臨床実習 II Clinical Laboratory Training II	必修	実習	180	(6)			180	臨床工学技士の役割と業務内容、患者や他職種との 関わりを臨床現場で学び、実践力を身につける。
		見学実習 Observation	必修	実習	30	(1)	30			医療職としての自覚と自立を促し、臨床工学技士が 医療機関の中でどの様な役割を担っているか説明で きる。
		プロフェッショナルへの道 I Career Seminar I	必修	演習	30	(1)	30			臨床工学技士を目指す学生として必要な心構えや チームワーク、コミュニケーション能力を身につけ る。
		プロフェッショナルへの道 Ⅱ Career Seminar Ⅱ	必修	演習	30	(1)		30		社会人として必要な社会人基礎力を中心に学び、適 切な自己管理能力と周囲と適切な関係性を築けるス キルを身につける。
規格外	その他	プロフェッショナルへの道Ⅲ Career Seminar Ⅲ	必修	演習	30	(1)			30	医療人として必要なモラルや生命倫理観を養い、患 者や関連スタッフと協働連携して働くことの出来る 人間力を身につける。
		国家試験演習 I Practice for the National Examination I	必修	演習	15	(1)			15	国家試験に必要な専門基礎科目の知識を整理し、模 擬問題を通して国家資格取得に必須となる基礎学力 を身につける。
		国家試験演習 II Practice for the National Examination II	必修	演習	30	(1)			30	模擬問題を反復練習することで、国家資格取得に必 要な専門科目に対応する力を身につける。
		臨床工学特論 I Advanced Clinical Engineering I	必修	演習	60	(2)			60	基礎科目で学んだ知識を復習し、知識と体験を結び つける思考力を獲得し、基礎力と応用力を身につけ る。

<u> </u>	<u> </u>											
	分	開講科目名	必修	授業	時間))	学年			講義概要		
	יט.	(英語表記)		形態	数	数	1年	2年	3年	群我似安		
		臨床工学特論 Ⅱ Advanced Clinical Engineering Ⅱ	必修	演習	60	(2)			60	専門基礎科目で学んだ知識を演習や実習とともに振 り返り、実践的な知識として活用できる。		
規格	その他	臨床工学特論Ⅲ Advanced Clinical Engineering Ⅲ	必修	演習	60	(2)				臨床工学技士として必要な全ての領域を復習し、医療人として活躍するための実践的な知識と技術を身につける。		
竹 外 		国際教育 International education	必修	演習	15	(1)		15		日本と海外の医療情勢や文化・民族性などの相違点 を学ぶことで、日本人としてのIdentityの確立と国 際的な幅広い視野・思考を身につける。		
		ME2種講座 ME2 Examination Preparation	必修	演習	30	(2)		30		電気工学、電子工学で学んだ知識を整理しつつ過去 問題に取り組むことで、電気工学分野の復習だけで なく、 医学と工学とを関連づけた知識として身につける。		