2019 年度

授業概要

科目名	電子工学 I ①						授業の種類	講義	必修・選択		必修	
授業回数	30		時間数	60	時間	2	単位	配当学	年時期	1年	後期	

【授業の目的・ねらい】

身のまわりの電子機器や、医療機器の動作に欠かせない電子工学の基礎を理解し、臨床工学技士として必要な知 識を身につける。

【実務者経験】

【授業全体の内容の概要】

電子物性の基礎から半導体やダイオードといった各種電子回路素子、各種増幅回路、発振回路などアナログ回路 を中心に学ぶ。

【授業終了時の達成課題(到達目標)】

国家試験出題基準の電気回路素子、電子回路要素、アナログ回路、通信理論、通信方式に関する部分を学ぶ。 目標①電磁界中の電子の挙動と物質内の電子の状態について理解する。目標②半導体の材料とデバイスの基礎を理解する。目 標③トランジスタの増幅の基礎を理解する。目標④各種電子回路の応用を知る。

回数	講義内容	準備物(教材)
1	(目標①) 電界中の電子の速度の計算ができるようになる。	
2	(目標①)物質中の電子の速度について理解し、電子の速度と電流の関係を学 ぶ。	
3	ででである。 (目標①)磁界中の電子の運動を学び、光電子増倍管とプラズマについても知る。	
4	で (目標①)物質の基本構成として原子、素粒子の種類を学ぶ。同位体の応用も 知る。	
5	(目標①) 原子における電子軌道の種類について学ぶ。	
6	(目標①) パウリの排他律を学び共有結合の起源について知る。	
7	(目標①) 混成軌道の概念を理解し固体のバンド理論を定性的に理解する。	
8	(目標②) 半導体の性質と n 型と p 型を知り、ダイオードの基本特性を学ぶ。	
9	(目標②) 色々な種類のダイオードと太陽電池について学ぶ。	
10	(目標②) トランジスタの構造と基本原理について学ぶ。	
11	(目標③) トランジスタの固定バイアス回路と増幅動作について学ぶ。	
12	(目標③) 熱暴走とそれを抑えるためのバイアス回路を3種類学ぶ。	
13	中間試験	
14	(目標③) トランジスタと増幅回路の周波数特性と3つの接地方式の特徴を学ぶ。	
15	(目標③) hパラメータを学びトランジスタの小信号等価回路の解析法を学ぶ。	

【使用教科書・教材・参考書】

・電気基礎1.2、堀田栄喜ほか、実教出版株式会社

【準備学習・時間外学習】

・目標①②③④において、復習をして、毎回出される課題を解き、次の授業で提出すること

【単位認定の方法及び基準(試験やレポート評価基準など)】

試験の結果を100点満点として成績を評価する 中間テストを50点、定期試験を50点として合計100点とする 60点以上の場合に科目を認定する